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We study cellular automata where the state at each site is decided by a majority
vote of the sites in its neighborhood. These are equivalent, for a restricted set
of initial conditions, to nonzero probability transitions in single spin-flip
dynamics of the Ising model at zero temperature. We show that in three or more
dimensions these systems can simulate Boolean circuits of AND and OR gates,
and are therefore P-complete. That is, predicting their state ¢ time-steps in the
future is at least as hard as any other problem that takes polynomial time on
a serial computer. Therefore, unless a widely believed conjecture in computer
science is false, it is impossible even with parallel computation to predict
majority-vote cellular automata, or zero-temperature single spin-flip Ising
dynamics, qualitatively faster than by explicit simulation.
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1. INTRODUCTION

The “complexity” of a physical system can be defined as the amount of
time, memory, or other computational resources needed to predict it. How
these resource requirements vary with the system size, or the number of
time-steps we wish to predict, becomes increasingly important as we study
larger and larger systems for longer and longer times. For instance, a com-
putation time of ¢(log t) or O(log? ) would be greatly preferable to ¢(¢)
for large t.

For example, consider a cellular automaton (CA), a dynamical system
with a discrete set of local states and a local update rule where each site’s
evolution depends on its state and those of its neighbors. We can predict
the state of a given site ¢ time-steps in the future by explicitly simulating the
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CA and filling in a light-cone of depth ¢ ending in that site. This takes time
O(t**+') on a serial computer (proportional to the volume of the light-cone
in d dimensions) or just () if done in parallel.

However, for classes of CAs that obey certain algebraic identities, we
can do much better than this.'®” These “quasi-linear” systems can be
predicted on a parallel computer in time O(log t) or ¢(log” t), much faster
than by explicit simulation. This places them in the complexity class NC,
the class of problems that can be solved for inputs of size » in time
O(log* n) for some k, on a parallel computer with a polynomial number
O(n°) of processors. In this case, the input consists of 7 = 0(#?) initial sites
at the top of the light-cone.

NC is a subset of P, the class of problems solvable in polynomial time
on a serial computer.*>® It is believed but not known that there are
inherently sequential problems, in P but not in NC, where a substantial
amount of work has to be done in step-by-step order, so that even a large
number of parallel processors cannot solve them in polylogarithmic time.
In our CA example, this would correspond to a rule for which no fast
parallel algorithm exists, so that the fastest method of prediction is to
simulate them explicitly.

P-complete problems, to which any other problem in P can be
reduced, are the most likely to be inherently sequential. If any P-complete
problem has a fast parallel algorithm, then every problem in P does, in
which case P=NC, (Similarly, if an NP-complete problem such as the
Traveling Salesman Problem has a deterministic polynomial-time algo-
rithm, then NP =P.)

One such problem is Circuir VALUE. Given a Boolean circuit, ie. a
directed graph whose nodes are AND, OR and NOT gates, and given the
truth values of its inputs, is the output true or false? This is P-complete
since any deterministic Turing machine computation of length ¢ can be
converted to a Boolean circuit of depth @(¢); thus polynomial-time com-
putations are equivalent to polynomial size (and depth) circuits. Since the
truth values at each level of the circuit affect those on the next level in
arbitrary ways, it is hard to imagine how one could calculate the output
without going sequentially through the circuit level by level; an NC algo-
rithm would have to somehow evaluate many levels at once, or provide a
method of skipping over most of them. (In fact, P=NC if and only if
circuits of polynomial depth always have much shallower equivalent
circuits.)

The MoNOTONE CIRcUIT VALUE problem, where AND and OR gates
are allowed but NOT gates are not, is still P-complete for the following
reason: using De Morgan’s laws a Ab=av b and av b=4 A b, we can
shift negations back through the gates until they only affect the inputs
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themselves. Thus any CIRcuiT VALUE problem can be converted to a
MOoONOTONE CIRCUIT VALUE problem with some of the inputs negated. This
kind of conversion, from an instance of one problem to an instance of
another, is called a reduction.

We will show that two cellular automaton rules based on voting
among neighboring sites are just as hard to predict as MONOTONE CIRCUIT
VALUE is to solve, by showing how to build arbitrary monotone Boolean
circuits into the CAs’ initial conditions. Thus these CAs are P-complete,
and unless P=NC there is no way to predict them much faster than
explicit simulation.

We will then relate these CAs to single spin-flip dynamics of the zero-
temperature Ising model, and show that the question of whether a given
spin will be “up” with non-zero probability is also P-complete. Our results
hold for d=3.

To our knowledge, the first use of P-completeness in statistical physics
is by Machta and Greenlaw,”” who show that several non-deterministic
systems, including diffusion-limited aggregation and Ising dynamics at non-
zero temperatures, are P-complete when a series of random bits directing
the system’s nondeterministic choices (how a particle diffuses, or which
spin will try to flip) is included in the input. Greenlaw et al.*®’ have pointed
out that predicting a CA’s evolution is P-complete in general, since CA
rules exist (e.g., ref. 4) which can simulate universal Turing machines.

2. MAJORITY-VOTE CELLULAR AUTOMATA

Let us consider the following CA rule, with two local states {0, 1}:

,_{1 it 5,+3,s>d
70 otherwise

where in d dimensions the sum is over the 2d nearest neighbors of s; in the
cubic lattice. In other words, s5,’s next state is decided by a majority vote
of the 2d + 1| sites in its immediate neighborhood, including itself (this is
sometimes called the Von Neumann neighborhood). We will call this the
majority-vote CA.

To be precise about the problem we’re posing, define MAJORITY-VOTE
CA PREDICTION as the following: given initial conditions in a volume with
V sites, will a certain site be occupied after ¢ time-steps where 1 < V? Then
we wish to show the following:

Theorem 1. MAJORITY-VOTE CA PREDICTION is P-complete for
dz=3.
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Proof. We can clearly solve this problem in P by explicit simulation,
since ¢ is bounded by the length of the input V; in fact, any polynomial
bound ¢ < O(V*) would ensure this. To show that it is P-complete we will
reduce MoNOTONE CIRCUIT VALUE to it.

In Fig. 1 we show how to build AND and OR gates in three dimen-
sions; there are probably many such constructions. We connect them with
“wires” with a U-shaped cross-section. The reader can easily check that the
occupied sites of the wire (those with s = 1) have four or five occupied sites
in their neighborhood, including themselves; the sites in the trough of the
wire have three occupied sites in their neighborhoods one short of a
majority. Therefore, the wire is fixed under the CA rule.

If one site in the trough becomes occupied, the site next to it will have
four occupied neighbors, and will become occupied at the next time-step;

Fig. 1. Clockwise from upper left, an AND gate, OR gate, and two types of elbows for
bending wires in the majority-vote CA. The trough connecting the vertical wires in the OR
gate goes all the way through, and the “notch” extends through all three sites in the back.
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this will “turn on” the site next to it, and so on. Thus the wire will
propagate this signal {(and, as we show below, it will never turn off after
turning on). We will use this to represent truth in the network.

The AND and OR gates work in a simple way. Each has three wires
meeting at a central site. For the AND gate, this central site has two
occupied neighbors, so if any two of the input wires turn on, it gains a
majority and sends a signal out along the third wire. In the OR gate the
central site has three occupied neighbors, so if any one of the three inputs
turns on, it gains a majority and turns on the other two. In addition, every
occupied site in these gates has at least four occupied neighbors, so the
gates are fixed under the rule.

OR gates can also be used to make a wire branch, so that the output
of a gate can “fan out” and become input into any number of others.
However, since our gates work in any direction, we need to make sure that
a spurious truth value won’t flow back up the circuit, and turn something
on that shouldn’t have; to do this, we can build “diodes” as shown in Fig. 2
and attach them to the OR gate’s outputs.

Note that timing is not an issue here: if a single input to an AND gate
turns on, for instance, it waits there patiently to see if it will be joined by
another.

Finally, to connect these gates we need to be able to bend the wires
to match the gates’ inputs. Figure 1 shows two “elbows” which can be
combined to reorient a wire in any of its 24 possible directions and orienta-
tions; straight sections can then extend it from place to place as desired.

These constructions allow us to convert any monotone Boolean circuit
to a set of initial conditions in some volume V, such that after at most V
time-steps (in fact, after a number of time-steps bounded by the total
number of sites in the wires’ troughs) a site representing the output will
become occupied.

So MaJoRITY-VOTE CA PREDICTION in three dimensions is P-complete,
since MONOTONE CIRCUIT VALUE can be reduced to it; if the majority-vote
CA can be predicted in O(log* ¢) parallel time, then we can use it to solve
monotone circuits just as quickly, and P and NC are equal.

Fig. 2. How to build a diode: if we attach two wires of an OR gate to the inputs of an AND
gate, truth will fiow from the OR through the AND but not the other way. Then we can
protect wire branchings from “truth backflows” by putting diodes on both outputs.
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Fig. 3. One, two, and three-dimensional configurations where the site at the origin (grey)
has half its neighbors occupied and half unoccupied, and all other sites have a majority like
themselves and so are fixed under the CA rule.

We next show how to simulate the d=3 majority vote CA in higher
dimensions. We claim that for every b there is a b-dimensional configura-
tion on the infinite lattice Z” such that the site at the origin (0,..., 0) has
half its neighbors occupied (not including itself) and half unoccupied, and
all other sites are fixed under the CA rule.

We will show this by induction as in Fig. 3. For 4 =0, we have a single
site with no neighbors, half of which are occupied and half of which are
unoccupied!

Then given such a configuration f,_, on Z® ' we can make one £, on
Z° by writing

| x, <0
S X1, Xany X)) =< [ 1(X 15 X200y X 1) x,=0
0 x, >0

The reader can easily show that sites with x,#0 have at most one
neighbor unlike themselves, so they are fixed under the CA rule. A site with
x, =0 has one neighbor occupied and one unoccupied (with x,= +1) so
its majority status is determined by its 2(h — 1) neighbors with x, = 0. But
these are described by f,, _, unless x,_, =0, and so on. Finally, the site at
(0,..,0) has b occupied neighbors and b unoccupied, being those whose
single non-zero x; is —1 or +1 respectively.
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Then to simulate the evolution of some three-dimensional configura-
tion g in d> 3 dimensions, let 5=d — 3 and define

g(x1, x5, X3) if y,=0 foralli

8'(x15 X2, X35 Y1y Yases V) = {fh(yls \ldots, V) otherwise

Then the evolution of g’ on a d-dimensional lattice will contain, at y,=0
for all i, the evolution of g on the three-dimensional lattice. So the d=3
case can be simulated by any d> 3, and MAJORITY-VOTE CA PREDICTION is
P-complete for d=3. |

We can do a similar construction for a slightly different CA rule:

, {1 it X,5>d

S, = A
0 otherwise

Here s; will be occupied on the next time step if d or more of its 2d nearest
neighbors, not including itself, are occupied. We will call this the half-or-
more CA.

Fig. 4. Clockwise from upper left, the basic junction of three wires in the half-or-more CA;
AND and OR gates formed by placing one or two 2 x 2 x 2 blocks adjacent to the center site;
and an elbow.
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Theorem 2. HALF-OR-MORE CA PREDICTION is P-complete for
d>3.

Proof. We give a construction in Fig. 4. OQur wires have a V-shaped
intersection, with occupied sites having three or four occupied neighbors
and sites in the trough having two. Three such wires can come together in
a pleasant intersection. By adding 2 x 2 x2 blocks, which are fixed under
the rule, we can give the center site one or two occupied neighbors, creat-
ing an AND or OR gate respectively. Because of the diagonal symmetry of
the wire, only one kind of elbow is required to bend it into any desired
direction and orientation. Higher dimensions can simulate the d=3 case as
in Theorem 1. |

3. ISING DYNAMICS

The Ising model is an idealization of magnetic materials in which each
site in a lattice has a spin s;,= 1. The total energy is then

E=—JY s:5;

i

summed over all pairs of nearest neighbors. In a ferromagnetic (resp.
anti-ferromagnetic) material, J >0 (J<0) and H is minimized when adja-
cent sites have the same (opposite) spin. On any two-colorable lattice, we
can change J to —J by choosing a sub-lattice of sites and flipping all their
spins; thus for cubic lattices, ferromagnetic and anti-ferromagnetic systems
are equivalent.

In single spin-flip dynamics, at each time-step we choose a random site
in the lattice and seek to minimize its contribution to the total energy from
its interaction with its nearest neighbors —Js; > s;. If the system is
exposed to a heat bath at temperature 7, states with energy E are chosen
with probability proportional to e ~#*T where k is Boltzmann’s constant; at
T=0 lower energy states are always preferred. Thus if a majority of s,’s
neighbors are up (down), we will change it to up (down); if its neighbors
are half up and half down, we will flip it with probability 1/2.

We can then formulate a prediction problem, called ZERO-TEMPERATURE
SINGLE SPIN-FLIP ISING DYNAMICS: given an initial set of spins, is there a non-
zero probability that a particular spin s; will be +1 after ¢ time-steps? That
is, does there exist a sequence of sites (and a sequence of choices of whether
or not to flip sites whose neighbors sum to zero) that leads to s,= +1?

We will show this problem is P-complete by reducing the special case
of HALF-OR-MORE CA PREDICTION we constructed above to it. We use the
following lemma:
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Lemma 3. For the choice of initial conditions constructed in
Theorem 2, a site will eventually become occupied under the half-or-more
CA rule if and only if there is a non-zero probability of that site flipping
up under zero-temperature single spin-flip Ising dynamics (where occupied
and unoccupied sites correspond to up and down spins respectively).

Proof. Let S, be the set of sites that are occupied in the initial condi-
tions. Then for all k>0, let S, ,, be the set of sites with d or more
neighbors in the union ;.. S, of the previous sets. Call the union of all
of these =50 Sk-

It is clear that S is precisely the set of sites with a non-zero probability
of flipping up. Any such site must have d neighbors who have a non-zero
probability of flipping up before it does, and these must have neighbors
before them, back to the initial sites S,. Conversely, any site s in S can be
flipped by flipping all the sites in S, — S, then all of §,— (S, uS,), and
so on until we get to it, flipping each site once (always choosing to flip up
in case of a tie).

Now for the initial conditions we constructed in Theorem 2, every site
in S, has d or more neighbors in S,; thus sites in S, will keep each other
occupied. Call such a set self-sustaining. Inductively, if after k& time-steps the
set of occupied sites is S, and if S, is self-sustaining, then S, =S, ., by
definition, S, , , is self-sustaining also, and all of S, ,, will be occupied on
the next time-step.

Thus S is also precisely the set of sites that the half-or-more CA will
turn on when starting with self-sustaining initial conditions, and the lemma
is proved. |

Then we have

Theorem 4. ZERO-TEMPERATURE SINGLE SPIN-FLIP ISING DYNAMICS
is P-complete.

Proof. We have reduced MONOTONE CIRCUIT VALUE to HALF-OR-
More CA PrepICTION, and reduced it in turn (in the special case of self-
sustaining initial conditions) to ZERO-TEMPERATURE SINGLE SPIN-FLIP
Ising DynaMics. The output of the circuit is true if and only if a particular
site has a non-zero probability of flipping up.

4. DISCUSSION AND CONCLUSION

We have shown that several systems are P-complete to predict in three
or more dimensions: majority-vote cellular automata, half-or-more cellular
automata, and single spin-flip Ising dynamics at zero temperature. Unless
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P =NC, then, these systems are inherently sequential, and no speedup to
polylogarithmic time is possible.

{Even if NC<P, a power-law speedup might still be possible; for
instance, Moriarty and Machta give an algorithm for diffusion-limited
aggregation with an expected power-law speedup.’®” We conjecture,
however, that for voting CAs and Ising dynamics in d> 3, no power-law
speedup beyond O(¢) is possible.)

In one dimension, all these problems are easy. In the nearest-neighbor
majority-vote CA, any domain of Os or 1s of length 2 or more is stable, and
the boundaries between them are fixed; checkerboards of alternating 0s and
Is collapse at the speed of light. In Ising dynamics (or the half-or-more
CA), every site can flip up (become occupied) unless the initial conditions
are all down (unoccupied).

What about two dimensions? Monotone Boolean circuits that are also
planar'™? can be evaluated in NC. It seems possible, then, that there is a
fast algorithm to predict these systems for d=2. In the case of Ising
dynamics, this would imply that a system’s complexity class is not
necessarily related to its thermodynamic behavior: a system with a finite
thickness in a third dimension can embed non-planar graphs and thus
render the problem P-complete, while such a system is in the same thermo-
dynamic universality class as the d=2 Ising model.
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